Insulin-sensitizing effects of thiazolidinediones are not linked to adiponectin receptor expression in human fat or muscle.
نویسندگان
چکیده
Circulating adiponectin levels are increased by the thiazolidinedione (TZD) class of PPARgamma agonists in concert with their insulin-sensitizing effects. Two receptors for adiponectin (AdipoR1 and AdipoR2) are widely expressed in many tissues, but their physiological significance to human insulin resistance remains to be fully elucidated. We examined the expression patterns of AdipoR1 and AdipoR2 in fat and skeletal muscle of human subjects, their relationship to insulin action, and whether they are regulated by TZDs. Expression patterns of both AdipoRs were similar in subcutaneous and omental fat depots, with higher expression in adipocytes than in stromal cells and macrophages. To determine the effects of TZDs on AdipoR expression, subcutaneous fat and quadriceps muscle were biopsied in 14 insulin-resistant subjects with type 2 diabetes mellitus after 45 mg pioglitazone or placebo for 21 days. This duration of pioglitazone improved insulin's suppression of glucose production by 41% and enhanced stimulation of glucose uptake by 27% in concert with increased gene expression and plasma levels of adiponectin. Pioglitazone did not affect AdipoR expression in muscle, whole fat, or cellular adipose fractions, and receptor expression did not correlate with baseline or TZD-enhanced insulin action. In summary, both adiponectin receptors are expressed in cellular fractions of human fat, particularly adipocytes. TZD administration for sufficient duration to improve insulin action and increase adiponectin levels did not affect expression of AdipoR1 or AdipoR2. Although TZDs probably exert many of their effects via adiponectin, changes in these receptors do not appear to be necessary for their insulin-sensitizing effects.
منابع مشابه
Expression of adiponectin receptor mRNA in human skeletal muscle cells is related to in vivo parameters of glucose and lipid metabolism.
The adiponectin receptors, AdipoR1 and AdipoR2, are thought to transmit the insulin-sensitizing, anti-inflammatory, and atheroprotective effects of adiponectin. In this study, we examined whether AdipoR mRNA expression in human myotubes correlates with in vivo measures of insulin sensitivity. Myotubes from 40 metabolically characterized donors expressed 1.8-fold more AdipoR1 than AdipoR2 mRNA (...
متن کاملMechanisms of early insulin-sensitizing effects of thiazolidinediones in type 2 diabetes.
Whereas thiazolidinediones (TZDs) are known to rapidly improve insulin action in animals, short durations of TZD therapy have never been studied in humans. Among the many known actions of TZDs, increased circulating levels of the high molecular weight (HMW) multimer of adiponectin may be an important insulin-sensitizing mechanism. We examined the effects of only 21 days of 45 mg of pioglitazone...
متن کاملAdiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome.
Adiponectin is an adipokine that is specifically and abundantly expressed in adipose tissue and directly sensitizes the body to insulin. Hypoadiponectinemia, caused by interactions of genetic factors such as SNPs in the Adiponectin gene and environmental factors causing obesity, appears to play an important causal role in insulin resistance, type 2 diabetes, and the metabolic syndrome, which ar...
متن کاملAntihyperglycemic effect of Rosa damascena is mediated by PPAR.γ gene expression in animal model of insulin resistance
Insulin resistance is a condition in which insulin signaling and action are impaired in insulin sensitive tissues and results in hyperglycemia, hyperlipidemia and type 2 diabetes mellitus. Our previous studies have shown that rosa damascena has antihyperglycemic effects on diabetic and normal rats. Therefore, we conducted a study to evaluate the effect of this medicinal plant on insulin sensiti...
متن کاملInhibition of Interleukin-1 Receptor-Associated Kinases 1/4, Increases Gene Expression and Serum Level of Adiponectin in Mouse Model of Insulin Resistance
Insulin resistance is a feature of most patients with type 2 diabetes mellitus. Epidemiological evidence suggests a correlation between inflammation and insulin resistant states such as obesity, but the underlying mechanisms are largely unknown. Interleukin-1 receptor-associated kinases (IRAK) play a central role in inflammatory responses by regulating the expression of various inflammatory gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 292 5 شماره
صفحات -
تاریخ انتشار 2007